目录

1. Overview
 - § 1.1 Structure 1
 - § 1.2 Specifications 1

2. Operation
 - § 2.1 Installation 2
 - § 2.2 Key Panel and functions 2
 - § 2.3 Manual Operation 2

3. Menus
 - § 3.1 Basic of menus 4
 - § 3.2 Zeroing 4
 - § 3.3 Location 4

4. Automatic Cycle
 - § 4.1 Overview 5
 - § 4.2 Program in menus 5
 - 4.2.1 D cycle 5
 - 4.2.2 F Cycle 6
 - § 4.3 Generating a program in Demo Mode 6
 - § 4.4 Run a cycle 7

5. Communication interface
 - § 5.1 USB Ports 8
 - § 5.2 Force Gauge Port (MD8) 8
 - § 5.3 RS232 Port 8
 - § 5.4 Power Supply 8

Appendix
- A-1 Package List 9
- A-2 Alarm Sign 9
- A-3 Dimension 10

Warranty 11
1. Overview

§1.1 Structure

1. LCD & Panel
2. Force gauge mounting plate
3. Adapter plate
4. L base plate
5. Sliding table

§1.2 Specifications

Load force (MAX): 65 kg (250 lbf, 650 N)
Stroke: 230 mm (9 in.)
Resolution of displace: 0.1 mm; Accuracy: ± 0.3 mm
Speed: 0.6~12 mm/sec (0.1 mm/sec adjustable), accuracy: ± 2%
Test mode: Manual Mode/Auto Cycle/Demo
Data interface: Output-USB (to PC), RS232, Input- RS232 to force gauge
Environment: 10~40℃, 10%~80% RH
Power: 100~230 VAC, 1 A
Dimension: 671*120*278 mm (Horizontal); 340*180*630 mm (Vertical)
Net Weight: 13 Kg (Horizontal); 15.5 Kg (Vertical)
2. Operation

§2.1 Installation

The test stand should be placed on a level, vibration-free work table.

1. Power
 Plug the supplied power cable and connect it to a AC socket (100 ~ 240V).
 Turn the power switch on and check whether the normal display and so on. No-load operation can be carried out to check whether operating normally, and no abnormal noise.

2. Force gauge installation
 Remove the force gauge mounting plate and installed on the force gauge. Then install them back.
 Install appropriate measurement head or jig on adapter plate and force gauge.

3. Install the specimen.

§2.2 Key Panel and functions

- Manual operation: Move left or right (Speed adjustment for Vertical); Menus: Item select.
- Manual operation: Speed adjustment (Move up and down for Vertical); Menus: Item select.
- Enter menus, confirm select or setting.
- Program operation: Start/Stop or pause.
- Manual operation: Relative coordinates zeroing; Menus: Exit or Return.
- Manual / Automatic.
- Connect or disconnect to the force gauge.

Fig.2-1
Fig.2-2

§2.3 Manual Operation

Power on, the system is in manual mode. Or Press switch to Manual from Auto.
Move the sliding table
Press \(\text{\textless} \) or \(\text{\textgreater} \) to move, release before beep, moving is stopped. Long press, after a prompt beep release, moving will continue. Press \(\Box \), \(\text{\textless} \) or \(\text{\textgreater} \) key to stop.

Adjusting speed
When the sliding table is moving, press \(\text{\textuparrow} \) or \(\text{\textdownarrow} \) can adjust speed, increase or decrease.

Locating move
In stop state, press \(\text{\textcircled{\textuparrow}} \) can start a locating move. The icon \(L \) and the relative coordinate of anchor point will be displayed.

The coordinate can be set in "Location" of menus (§3.3).

Zeroing relative coordinates
In manual mode, press \(\Box \), can clear current relative coordinates.
3. Menus

Some parameters related to system and operation can be set queried. The menu items are shown in fig.3.1. Among them, D Cycle, F Cycle and Demo is described in 4 Automatic Cycle.

§3.1 Basic of menus

- In Manual Mode, press to enter Menu.
- Press or to select the item.
- Press or to input data or select options.
- Press can confirm the setting and return. Press to discard changes and exit setup.

§3.2 Zeroing

The test stand has a mechanical zero point, through the back to zero point can initialize the sliding table location. It be used for cancellation the offset as various causes.

Select "YES" and press , the sliding table will return to the mechanical zero point automatically (Fig.3-2b).

§3.3 Location

You can set an anchor point, in order to reach or return it quickly used the locating move function (§2.3). A anchor point can be set. It be usually a start point for an operation .

The coordinate is set as Fig 3-3a.

In Manual Mode, press to make the sliding table move to anchor point directly (Fig 3-3b). See also §2.3.
4. Automatic Cycle

§4.1 Overview

The test stand has the program operation functions (automatic cycle), for control the test procedure automatically.

The cycle is divided into 2 types: displacement-based cycle (D Cycle) and force-based cycle (F Cycle).

For each type of cycle, 9 programs can be saved, running a cycle by its cycle number.

1. Displacement-based Cycle (D Cycle)

The cycle is programmed based on relative coordinates. (Fig. 4-1)

The cycle number, relative coordinates of each section end, speeds, stop duration at each node and the cycle time can be set in menus. Also can be generated in Demo Mode automatically.

2. Force-based Cycle (F Cycle)

The cycle is programmed based on the force reached. (Fig. 4-2)

Connecting to and communicate with the force gauge is needed to run the F cycle.

The cycle number, force of each section end, speeds, stop duration at each node and the cycle time can be set in menus.

§4.2 Program in menus

4.2.1 D cycle

As shown in Fig. 4-3. Enter "Menu"-"D cycle" to set or change the parameters (Table 4-1) of a cycle.

<table>
<thead>
<tr>
<th>Sign</th>
<th>Meaning</th>
<th>Sign</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>*</td>
<td>Va</td>
<td>Speed</td>
</tr>
<tr>
<td>A</td>
<td>Relative Coordinate</td>
<td>Vw</td>
<td>Working Section</td>
</tr>
<tr>
<td>W</td>
<td>End Point of W section</td>
<td>Vr</td>
<td>Return Section</td>
</tr>
<tr>
<td>T0</td>
<td>Start Point</td>
<td>N</td>
<td>Cycle Time</td>
</tr>
<tr>
<td>Ta</td>
<td>End Point of A section</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tw</td>
<td>End Point of W section</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Absolution coordinate of start point. (the relative coordinate is "0.0")
4.2.2 F Cycle

As shown in Fig.4-4. Enter "Menu"."F cycle" to set or change the parameters (Table 4-2) for a cycle.

NOTE:
Here, the force is just the value of loading force, no unit. In force gauge side, the unit of force must be set to you need.
In F Cycle, the speed of Return Section is fixed to the maximum speed of test stand and cannot be set.

<table>
<thead>
<tr>
<th>Sign</th>
<th>Meaning</th>
<th>Sign</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>*</td>
<td>V1</td>
<td>Speed</td>
</tr>
<tr>
<td>F1</td>
<td>Force</td>
<td>V2</td>
<td>F1 Section</td>
</tr>
<tr>
<td>F2</td>
<td>F2 Section</td>
<td>V3</td>
<td>F2 Section</td>
</tr>
<tr>
<td>F3</td>
<td>F3 Section</td>
<td>N</td>
<td>F3 Section</td>
</tr>
<tr>
<td>T0</td>
<td>Stop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>Duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4-2

*Absolution coordinate of start point.(the relative coordinate is "0.0")

4.3 Generating a program in Demo Mode

In Demo Mode, the program of a D cycle can be transfer from a manual operation procedure for running the same test procedure later.

Enter the menu and select "Demo", press enter Demo interface (Fig.4-5a).

1 Set the start point
Move the sliding table to the start point of cycle. Press to confirm, The relative coordinates will be cleared, and the absolute coordinates will be recorded.
(Fig.4-5b~c).

2 Access section and Working section
Move the sliding table to the end of the section respectively, and adjusting the speed of each section.
(Fig.4-5d, Fig.4-5e)
At the of each section, press to confirm, the end coordinates and speeds will be recorded.
3 Confirm and modify operating parameters
As complete setting of all section, all cycle parameters will be displayed. You can confirm or edit them further. (Fig.4-5f).

4 Save the setting
Select a Cycle Number, press to save and return.

§4.4 Run a cycle
The test stand can store 9 D-Cycle programs and 9 F-Cycle programs. You must call the required Cycle Number before use.

1 In Manual Mode, press to enter menus.
Select D Cycle or F Cycle, enter cycle setup, select the Cycle Number. Now you can edit the parameters also. Press to confirm and return.

2 Press to switch to Automatic Mode.

3 Press to run the cycle. Press to pause or rerunning the cycle.

4 Press will switch to Manual mode and terminate the cycle.

NOTE
1 When a cycle is running, the relative coordinate of start point will be cleared to “0.0”.
2 The Cycle Time(N) can be 1~99.
3 In F Cycle, the icon means not connecting to force gauge, the cycle will not run. Connect the force gauge with cable and press to link it.
4 In F Cycle, If the force value cannot achieve the setting, cycle section will not end, may stop due to an alarm limit. You should be re-adjust the cycle parameters.

The meaning of alarm icons and alarm relieving method is shown in Appendix A-2.
5. Communication interface

Test stand has a variety of data interface, choose according to your specific application.

§5.1 USB Ports

Standard USB interface, used to connect PC to upload the data.
Using the data upload, the data acquisition software must be installed and running in the computer.

<table>
<thead>
<tr>
<th>RS232 Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data word length</td>
</tr>
<tr>
<td>Stop bit</td>
</tr>
<tr>
<td>Parity</td>
</tr>
<tr>
<td>Baud rate</td>
</tr>
<tr>
<td>Hardware Flow Control</td>
</tr>
</tbody>
</table>

Table 5-2

§5.2 Force Gauge Port (MD8)

Used for receive data and limit alarms from the force gauge (Table 5-1).
The protocol is RS232, the baud rate is fixed at 38400bps.
On force gauge side, baud rate must be set to 38400bps, then the test stand can receive data from it. See the user’s manual of the force gauge for setting method.

<table>
<thead>
<tr>
<th>Force gauge port (MD8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

Table 5-1

§5.3 RS232 Port

Used for transferring data to other equipment.
The specifications is shown in Table 5-2, baud rate setting in menus(Fig.5-2).

§5.4 Power Supply

Used for Power Supply of force gauge.
DC5V 0.5A.
Appendix

A-1 Package List

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>QTY</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Stand</td>
<td>EST-FG2H/V</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AC Cable</td>
<td>ECB-AC-25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>USB Cable</td>
<td>ECB-USBA-B</td>
<td>1</td>
<td>Data upload</td>
</tr>
<tr>
<td>MD8 Cable</td>
<td>ECB-MD8*2</td>
<td>1</td>
<td>Connect to force gauge</td>
</tr>
<tr>
<td>User's Manual</td>
<td>DUM410B-EN</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Certificate</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fuse</td>
<td>3A</td>
<td>1</td>
<td>share</td>
</tr>
</tbody>
</table>

A-2 Alarm Sign

<table>
<thead>
<tr>
<th>NAME</th>
<th>SIGN</th>
<th>MEANING</th>
<th>RELEASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke Overrun</td>
<td>![Icon]</td>
<td>Moving beyond stroke. Arrow icon indicates transfinite direction.</td>
<td>To move in the opposite direction to Leave the overrun position.</td>
</tr>
<tr>
<td>Force Overrun</td>
<td>![Icon]</td>
<td>Received overrun alarm from gauge</td>
<td>If in the automatic cycle, cycle will terminate. You can move manually to make force gauge relieving the alarm.</td>
</tr>
<tr>
<td>locked rotor Alarm</td>
<td>![Icon]</td>
<td>locked rotor over load</td>
<td>Press Stop</td>
</tr>
<tr>
<td>No connect</td>
<td>![Icon]</td>
<td>No connect with force gauge or not switch on the link.</td>
<td>Check the connection or set.</td>
</tr>
<tr>
<td>Travel switch alarm</td>
<td>![Icon]</td>
<td>Moving beyond the mechanical limit of test stand, motor power supply is cut off.</td>
<td>**</td>
</tr>
</tbody>
</table>

** Lift the travel switch alarm

Turn the power on, in manual mode.

Press a internal switch inside the reset hole with a fine rod or some like things. At the same time, press the movement keys on the panel to make the sliding table back to the correct position.

Travel switch alarm often due to a device or parts damaged or shift, or by the abnormal strong electromagnetic interference etc.. If it often appear, should be examined or repaired by professional.